Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 15(3): e1007967, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30901340

RESUMO

Mast cell tumours are the most common type of skin cancer in dogs, representing a significant concern in canine health. The molecular pathogenesis is largely unknown, but breed-predisposition for mast cell tumour development suggests the involvement of inherited genetic risk factors in some breeds. In this study, we aimed to identify germline risk factors associated with the development of mast cell tumours in Labrador Retrievers, a breed with an elevated risk of mast cell tumour development. Using a methodological approach that combined a genome-wide association study, targeted next generation sequencing, and TaqMan genotyping, we identified a synonymous variant in the DSCAM gene on canine chromosome 31 that is associated with mast cell tumours in Labrador Retrievers. DSCAM encodes a cell-adhesion molecule. We showed that the variant has no effect on the DSCAM mRNA level but is associated with a significant reduction in the level of the DSCAM protein, suggesting that the variant affects the dynamics of DSCAM mRNA translation. Furthermore, we showed that the variant is also associated with mast cell tumours in Golden Retrievers, a breed that is closely related to Labrador Retrievers and that also has a predilection for mast cell tumour development. The variant is common in both Labradors and Golden Retrievers and consequently is likely to be a significant genetic contributor to the increased susceptibility of both breeds to develop mast cell tumours. The results presented here not only represent an important contribution to the understanding of mast cell tumour development in dogs, as they highlight the role of cell adhesion in mast cell tumour tumourigenesis, but they also emphasise the potential importance of the effects of synonymous variants in complex diseases such as cancer.


Assuntos
Moléculas de Adesão Celular/genética , Mastocitoma Cutâneo/genética , Mastocitoma Cutâneo/veterinária , Animais , Adesão Celular/genética , Doenças do Cão/genética , Cães , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Células Germinativas , Mutação em Linhagem Germinativa/genética , Mastócitos/metabolismo , Mastócitos/fisiologia , Mastocitoma Cutâneo/metabolismo , Mastocitose Cutânea/genética , Fatores de Risco , Mutação Silenciosa/genética , Neoplasias Cutâneas/genética
2.
PLoS Genet ; 11(11): e1005647, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26588071

RESUMO

Canine mast cell tumours (CMCT) are one of the most common skin tumours in dogs with a major impact on canine health. Certain breeds have a higher risk of developing mast cell tumours, suggesting that underlying predisposing germ-line genetic factors play a role in the development of this disease. The genetic risk factors are largely unknown, although somatic mutations in the oncogene C-KIT have been detected in a proportion of CMCT, making CMCT a comparative model for mastocytosis in humans where C-KIT mutations are frequent. We have performed a genome wide association study in golden retrievers from two continents and identified separate regions in the genome associated with risk of CMCT in the two populations. Sequence capture of associated regions and subsequent fine mapping in a larger cohort of dogs identified a SNP associated with development of CMCT in the GNAI2 gene (p = 2.2x10-16), introducing an alternative splice form of this gene resulting in a truncated protein. In addition, disease associated haplotypes harbouring the hyaluronidase genes HYAL1, HYAL2 and HYAL3 on cfa20 and HYAL4, SPAM1 and HYALP1 on cfa14 were identified as separate risk factors in European and US golden retrievers, respectively, suggesting that turnover of hyaluronan plays an important role in the development of CMCT.


Assuntos
Doenças do Cão/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Mutação em Linhagem Germinativa , Mastocitoma/veterinária , Processamento Alternativo , Animais , Cães , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Mastocitoma/genética , Polimorfismo de Nucleotídeo Único
3.
Genome Biol ; 14(12): R132, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24330828

RESUMO

BACKGROUND: Canine osteosarcoma is clinically nearly identical to the human disease, but is common and highly heritable, making genetic dissection feasible. RESULTS: Through genome-wide association analyses in three breeds (greyhounds, Rottweilers, and Irish wolfhounds), we identify 33 inherited risk loci explaining 55% to 85% of phenotype variance in each breed. The greyhound locus exhibiting the strongest association, located 150 kilobases upstream of the genes CDKN2A/B, is also the most rearranged locus in canine osteosarcoma tumors. The top germline candidate variant is found at a >90% frequency in Rottweilers and Irish wolfhounds, and alters an evolutionarily constrained element that we show has strong enhancer activity in human osteosarcoma cells. In all three breeds, osteosarcoma-associated loci and regions of reduced heterozygosity are enriched for genes in pathways connected to bone differentiation and growth. Several pathways, including one of genes regulated by miR124, are also enriched for somatic copy-number changes in tumors. CONCLUSIONS: Mapping a complex cancer in multiple dog breeds reveals a polygenic spectrum of germline risk factors pointing to specific pathways as drivers of disease.


Assuntos
Neoplasias Ósseas/veterinária , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Doenças do Cão/genética , Estudo de Associação Genômica Ampla , Osteossarcoma/veterinária , Animais , Neoplasias Ósseas/genética , Variações do Número de Cópias de DNA , Cães , Evolução Molecular , Predisposição Genética para Doença , Variação Genética , Genoma , Humanos , MicroRNAs/genética , Osteossarcoma/genética
4.
Genes Chromosomes Cancer ; 37(4): 333-45, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12800145

RESUMO

The 8p11-21 region is a frequent target of alterations in breast cancer and other carcinomas. We surveyed 34 breast tumor cell lines and 9 pancreatic cancer cell lines for alterations of this region by use of multicolor fluorescence in situ hybridization (M-FISH) and BAC-specific FISH. We describe a recurrent chromosome translocation breakpoint that targets the NRG1 gene on 8p12. NRG1 encodes growth factors of the neuregulin/heregulin-1 family that are ligands for tyrosine kinase receptors of the ERBB family. Breakpoints within the NRG1 gene were found in four of the breast tumor cell lines: ZR-75-1, in a dic(8;11); HCC1937, in a t(8;10)(p12;p12.1); SUM-52, in an hsr(8)(p12); UACC-812, in a t(3;8); and in two of the pancreatic cancer cell lines: PaTu I, in a der(8)t(4;8); and SUIT-2, in a del(8)(p). Mapping by two-color FISH showed that the breaks were scattered over 1.1 Mb within the NRG1 gene. It is already known that the MDA-MB-175 breast tumor cell line has a dic(8;11), with a breakpoint in NRG1 that fuses NRG1 to the DOC4 gene on 11q13. Thus, we have found a total of seven breakpoints, in two types of cancer cell lines, that target the NRG1 gene. This suggests that the NRG1 locus is a recurring target of translocations in carcinomas. PCR analysis of reverse-transcribed cell line RNAs revealed an extensive complexity of the NRG1 transcripts but failed to detect a consistent pattern of mRNA isoforms in the cell lines with NRG1 breakpoint.


Assuntos
Neoplasias da Mama/genética , Quebra Cromossômica/genética , Neuregulina-1/genética , Neoplasias Pancreáticas/genética , Translocação Genética/genética , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Mapeamento Cromossômico , Códon de Iniciação/genética , Éxons/genética , Humanos , Neuregulina-1/biossíntese , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/patologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...